\(\int \frac {\sqrt {f+g x}}{\sqrt {a+b \log (c (d+e x)^n)}} \, dx\) [159]

   Optimal result
   Rubi [N/A]
   Mathematica [N/A]
   Maple [N/A]
   Fricas [F(-2)]
   Sympy [N/A]
   Maxima [N/A]
   Giac [N/A]
   Mupad [N/A]

Optimal result

Integrand size = 28, antiderivative size = 28 \[ \int \frac {\sqrt {f+g x}}{\sqrt {a+b \log \left (c (d+e x)^n\right )}} \, dx=\text {Int}\left (\frac {\sqrt {f+g x}}{\sqrt {a+b \log \left (c (d+e x)^n\right )}},x\right ) \]

[Out]

Unintegrable((g*x+f)^(1/2)/(a+b*ln(c*(e*x+d)^n))^(1/2),x)

Rubi [N/A]

Not integrable

Time = 0.04 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.00, number of steps used = 0, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \frac {\sqrt {f+g x}}{\sqrt {a+b \log \left (c (d+e x)^n\right )}} \, dx=\int \frac {\sqrt {f+g x}}{\sqrt {a+b \log \left (c (d+e x)^n\right )}} \, dx \]

[In]

Int[Sqrt[f + g*x]/Sqrt[a + b*Log[c*(d + e*x)^n]],x]

[Out]

Defer[Int][Sqrt[f + g*x]/Sqrt[a + b*Log[c*(d + e*x)^n]], x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\sqrt {f+g x}}{\sqrt {a+b \log \left (c (d+e x)^n\right )}} \, dx \\ \end{align*}

Mathematica [N/A]

Not integrable

Time = 3.04 (sec) , antiderivative size = 30, normalized size of antiderivative = 1.07 \[ \int \frac {\sqrt {f+g x}}{\sqrt {a+b \log \left (c (d+e x)^n\right )}} \, dx=\int \frac {\sqrt {f+g x}}{\sqrt {a+b \log \left (c (d+e x)^n\right )}} \, dx \]

[In]

Integrate[Sqrt[f + g*x]/Sqrt[a + b*Log[c*(d + e*x)^n]],x]

[Out]

Integrate[Sqrt[f + g*x]/Sqrt[a + b*Log[c*(d + e*x)^n]], x]

Maple [N/A]

Not integrable

Time = 0.12 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.86

\[\int \frac {\sqrt {g x +f}}{\sqrt {a +b \ln \left (c \left (e x +d \right )^{n}\right )}}d x\]

[In]

int((g*x+f)^(1/2)/(a+b*ln(c*(e*x+d)^n))^(1/2),x)

[Out]

int((g*x+f)^(1/2)/(a+b*ln(c*(e*x+d)^n))^(1/2),x)

Fricas [F(-2)]

Exception generated. \[ \int \frac {\sqrt {f+g x}}{\sqrt {a+b \log \left (c (d+e x)^n\right )}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((g*x+f)^(1/2)/(a+b*log(c*(e*x+d)^n))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

Sympy [N/A]

Not integrable

Time = 0.98 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.93 \[ \int \frac {\sqrt {f+g x}}{\sqrt {a+b \log \left (c (d+e x)^n\right )}} \, dx=\int \frac {\sqrt {f + g x}}{\sqrt {a + b \log {\left (c \left (d + e x\right )^{n} \right )}}}\, dx \]

[In]

integrate((g*x+f)**(1/2)/(a+b*ln(c*(e*x+d)**n))**(1/2),x)

[Out]

Integral(sqrt(f + g*x)/sqrt(a + b*log(c*(d + e*x)**n)), x)

Maxima [N/A]

Not integrable

Time = 0.65 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.93 \[ \int \frac {\sqrt {f+g x}}{\sqrt {a+b \log \left (c (d+e x)^n\right )}} \, dx=\int { \frac {\sqrt {g x + f}}{\sqrt {b \log \left ({\left (e x + d\right )}^{n} c\right ) + a}} \,d x } \]

[In]

integrate((g*x+f)^(1/2)/(a+b*log(c*(e*x+d)^n))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(g*x + f)/sqrt(b*log((e*x + d)^n*c) + a), x)

Giac [N/A]

Not integrable

Time = 0.34 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.93 \[ \int \frac {\sqrt {f+g x}}{\sqrt {a+b \log \left (c (d+e x)^n\right )}} \, dx=\int { \frac {\sqrt {g x + f}}{\sqrt {b \log \left ({\left (e x + d\right )}^{n} c\right ) + a}} \,d x } \]

[In]

integrate((g*x+f)^(1/2)/(a+b*log(c*(e*x+d)^n))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(g*x + f)/sqrt(b*log((e*x + d)^n*c) + a), x)

Mupad [N/A]

Not integrable

Time = 1.34 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.93 \[ \int \frac {\sqrt {f+g x}}{\sqrt {a+b \log \left (c (d+e x)^n\right )}} \, dx=\int \frac {\sqrt {f+g\,x}}{\sqrt {a+b\,\ln \left (c\,{\left (d+e\,x\right )}^n\right )}} \,d x \]

[In]

int((f + g*x)^(1/2)/(a + b*log(c*(d + e*x)^n))^(1/2),x)

[Out]

int((f + g*x)^(1/2)/(a + b*log(c*(d + e*x)^n))^(1/2), x)